等式的性质教学反思
身为一位到岗不久的教师,课堂教学是我们的任务之一,在写教学反思的时候可以反思自己的教学失误,那么应当如何写教学反思呢?下面是小编整理的等式的性质教学反思,欢迎阅读与收藏。
等式的性质教学反思1等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的,《等式的基本性质》教学反思。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。
本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。
由于等式的基本性质是解方程的基础和依据,所以我在教学时给予特别重视,加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。
第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论,教学反思《《等式的基本性质》教学反思》。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。
然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。
实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。
通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。
这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。
总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的性质教学反思2在得出等式性质时,是一步一步引导学生去发现的,学生掌握的不错,但讲的还是多,不如直接独立完成,小组讨论发现,总结时强调一下,如何去记住这个性质,而不是背下来。
课堂一定要关注学生,认真思考的学生在课堂上总会带给你一些惊喜,如果你忽视了,就不仅仅是错过了那一次精彩。这节课在学生总结等式的性质的时候,有一个学生将书上的等式的性质中“所得的结果仍是等式”替换成“数量不变”,这也是我在备课时所想的,能不能替换一下,所以我在备课本上写了“结果不变”,可是没过一会,这个同学又举手了,说自己的“数量不变”不能替换书上的话,当然也包括了我的“结果不变”,因为等式两边同时加或减去同一个数(0除外),结果肯定会发生变化的。就是因为这样一个能不能替换的问题,学生对等式的性质的理解肯定会更好。
等式的性质教学反思3教后记不等式的性质是人教版七年级下册第九章《不等式与不等式组》的第二节课,本节课主要学习不等式的三个基本性质,通过实例导入课题,形成不等式的基本性质。不等式的性质也是中学数学的重要内容,它渗透到了中学数学课本的很多章节,在实际问题中被广泛应用,可以说它是解决其它数学问题的一种有利工具。
因此不等式的性质的学习对培养学生分析问题,解决问题的能力,体会数学的价值都有较大的作用。在此基础上使我们认识到数学来自于实践,也应回到实践中去,从而提高学习数学的兴趣,培养自觉运用数学的意识。
现就今天在初一级1班上的《不等式的性质》这节课,进行反思如下:
一、课前准备应该对该知识点进行深刻的认识和理解
不等式的三个基本性质是本章解一元一次不等的基础,也是证明不等式主要依据。解不等式就是用不等式的性质来施行一系列的等价变换。因此,在课前准备工作上要正确认识和理解不等式的性质。在教学过程中,要灵活的应用不等式的性质解一元一次不等式。由于一元一次不等式的解法与一元一次方程的解法十分相似,所以在学习本节时,与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。在学生已经理解一元一次不等式的解集的基础上再进一步让学生通过数轴表示不等式的解集,通过数形结合解一元一次不等式。
二、教学过程中知识点的落实
在本节课中,要求学生学习的主要内容是不等式的三条性质,及运用这三条性质对不等式进行正确变形来解不等式。如果直接就给同学们讲不等式有这样的三条性质,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我在上这一节课时就想到了运用类比的思想来学习这节课的内容,这样学生既学会了新知识又复习了旧知识,还把他们联系到了一起,而且学生还觉得这节课学的知识其实好象是旧知识,只是进行了一点改动,接受起来比较的容易,掌握起来也比较的容易。这个方法可以说是贯穿了整堂新课的学习。
在课前复习的这个教学环节上,我首先是用解两个方程引出了等式的基本性质,然后把这两个方程的等号变成不等号,让学生们观察,进行猜测、判断。在学生的猜测与判断中,我不做任何肯定与否定,设置了一个悬念,由此来引入我们将要学习的新内容,给学生增加了一种新奇感。
教学中关注不等式的实际背景,从对天平,跷跷板等学生熟悉的场景中数量关系的分析,引入不等式,不等式的解集,不等式的性质。全课着重知识的动态生成,渗透数学的建模,类比,分类等思想方法,促使学生从学会向会学转化。同时要注意不等式性质3是难点,也是重点,在学生理解的同时,应多加训练。
在进行三条性质的探索的过程中,我还是运用了类比的思想。我是分两步进行性质的推导的。首先是性质一,我是让同学们运用天平像做游戏一样做实验,既可以提高学生的学习兴趣,又能发展学生的团结协作能力,而且大家一起做实验,也提供了讨论的空间和机会。再对照等式的性质一,所以同学们很容易就推断出不等式的性质一。性质二和性质三是一起推导出来的。这里我是让同学们独立地通过数字来探寻答案,主要考虑到给他们独立思考的空间,一方面我想让他们举的例子多一点、全面一点,另一方面是因为我观察到同学在讨论的时候有的同学是只听不讲,所以我想给他们一些空间,一边做一边就可以想一想,特别是有了前面性质一的推导,他们应该还是比较能够摸到方向的。但是出来的答案可能不完善,这个我在上课之前就考虑到了,因为这两条性质与等式的性质二有了一定的区别,但是我想有那么多的同学举例子,每人举5个,总是可以互相补全的,即使讲不全也没关系,我可以补充,甚至对他们的结论进行反驳,营造一个互相辩论的机会, ……此处隐藏7044个字……全班交流,在交流中教师应逐步提示,因为这是一个全新的知识,得出等式的性质。最后,让学生自己写几个等式看一看。通过具体的操作为学生探究问题,寻找结论提供了真实的情境,富有启发性、引领性,让学生经历了解决问题的过程,并在问题的解决中发现并掌握了知识。
二、让学生运用等式的性质解方程
引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学习解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,课前布置了学生预习,课中我先让学生尝试练习,但巡视中发现学生没有根本理解,我就利用天平所显示的数量关系,引导学生发现“在方程的两边都减去10,使方程的左边只剩下x”,并详细讲解解方程的书写格式,包括检验。通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。然后让学再次通过修正,试一试,巩固解方程的知识。本节课达到了预期的效果。
三、遗憾的是,由于星期一集体活动的冲突,导致今天的上课时间30分钟都不到,因此学生的交流显得不充分,教师的重点讲解显得不到位
等式的性质教学反思14教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3—3=9—3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。接下来教学例2,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成3分,得到每份是6的基础上,我用课件演示了分的过程,让学生把演示过程写出来,从而解出方程。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。
按理说,只要稍加类推,学生应该能掌握方程的解法。但接下来的练出人意料,除了少数成绩较好的学生能按照要求完成外,大部分几乎不会做,甚至动不了笔。问题出在哪里?经过认真反思总结如下:
一是从天平过渡到方程,类推的过程学生理解不透,天平两端同时减去3个方块,就相当于方程两边同时减去3,这个过程写下来时,要强调左右两边原来状态保持不变,要原样写下来,如果这样的话就不会造成有的学生不会格式。
二是对为什么要减去3讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去3却还似懂非懂,如果当时举例说明也许很有效果,比如:x—3=6,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个x是多少,就要根据方程的具体情况,若比x多余的就要减去,不足x的就要补足,这样效果肯定好些。
三是备学生环节出现差错,这部分内容应该不难,但学生的现有基础是确定教学方法的基础,从教学效果看,我明显做的不够。
四是教学内容确定不恰当,本来我是想,上课要有一定的容量,就把例1和例2放在一起教学,既有加减,又有乘除的,只教学加法和乘法的,减法和除法的解法,让学生通过迁移类推的方法的解决。由于我班学生是我本期新接的,对学生了解不够,学生基础参差不齐,而且整体水平较差,因此安排两个例题有难度。
等式的性质教学反思15《等式的性质》这部分内容是在学生已学用方程表示简单情境中的数量关系的基础上,通过天平这一直观教具,引导学生探索和发现等式性质,它是解方程的认知基础,因此学习和理解等式的性质就显得尤为重要。根据教材内容和学情,我将教学重点确定为:掌握等式的基本性质;教学难点为:理解并掌握等式的性质,能根据具体情境列出相应的方程。
一、成功之处
1.游戏热身,点燃热情。
课堂开始,我设计了一个请学生用身体模仿天平的热身游戏,伸开两臂,犹如人体天平,我用给出天平两边不同的重量或是相同的重量,让学生模仿不同的天平状态,学生玩得高兴,学得轻松,他们对天平只要两边重量相等才会平衡加深了认识。
2.先扶后放,研究性质。
在教学中,我将等式的第一个性质作为引导重点研究内容,让学生仔细观察第一个天平图,并说一说:通过图你知道了什么?学生比较轻松观察到:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡,从而发现一个茶壶的重量=2个茶杯的重量。
接着通过动态展示在天平的两边同时各放上一个茶杯,引导学生思考:此时天平会发生什么变化呢?为什么?你是怎么想的?通过一系列不断追问,鼓励学生完整说出自己的思考过程。然后动态再演示这一过程,接着提出不同的问题:如果同时加上两个、三个、五个、六个同样的茶杯,天平会怎样呢?为什么?这样学生有理有据地表述自己的观点。同时引导学生构建出天平与等式之间的联系,将天平上的实物抽象到等式的计算中,从而一步步引导学生发现“等式的两边同时加上或减去同一个数,等式的两边相等”的性质。
然后再放手让学生通过观察、理解、操作,共同探索得出等式的第二个性质:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。我尽可能地放手,给予适时地点拨,总结。在“为什么等式两边不能除以O?”这个问题时组织学生交流,使他们理解:O不能做除数。
3.开放练习,激活思维。
为了激活学生思维,我将巩固练习设计为思维开放的题目,使学生积极主动思考。我设置了以下题目:
(1)如果2x -5=9,那么2x =9+( )
(2)如果5=10+x ,那么5x -( )=10
(3)如果3x =7,那么6x =( )
(4)如果5x =15,那么x =( )
先让学生回忆等式的性质,再利用等式的性质填空。对于不同层次的学生,他们的思维广度和深度是不同的,做到了使不同的学生在数学上获得不同的发展。
二、改进之处
1.在等式性质的探究中,为了加强对比,我觉得应该再增加在天平的两边同时加、减、乘、除去不同质量的物品,让学生发现这时天平不平衡,通过这一层次的实验,从而让学生清楚地加深加上对“同一个数”的认识,进行更深入地思考。
2.对于等式的性质应不仅仅停留在说的这一环节,而应在实验的基础上让学生灵活地运用字母表示数的知识,将等式写出来加以表示,这样不仅有效地训练学生数学的思维,还使学生对等式的性质有了更深一层的认识,为以后的学习做好铺垫。
总之在课堂上我逐渐放手,让学生经历观察、实验、猜测、推理、验证的过程,使他们不断加深对等式性质的理解,同时为后面学习解方程奠定良好的基础。
文档为doc格式